Decentralized Asynchronous Multi-player Bandits

Jingqi Fan, Canzhe Zhao, Shuai Li, Siwei Wang* https://arxiv.org/abs/2509.25824

Problem formulation:

- M players, K arms, T total steps.
- Let $[M] := \{1, ..., M\}$ and $[K] := \{1, ..., K\}$.
- Let $1 \le T_{\text{start}}^j < T_{\text{end}}^j \le T$. A player is active at step t means that she needs to pull an arm at this step. Let m_t denote the number of active players at step t.
- Each player $j \in [M]$ is only active from T_{start}^j to T_{end}^j .
- Player j is only aware of T, but does not know T_{start}^{j} and T_{end}^{j} .
- At each step $t \in [T^j_{\mathrm{start}}, T^j_{\mathrm{end}}]$, player j pulls an arm $\pi^j(t) \in [K]$.
- She observes $< r^{j}(t), \eta^{j}(t) >$, where
 - 1. $r^j(t) := X^j(t)[1 \eta^j(t)]$ is a reward, and $X^j(t) \sim \operatorname{Bernoulli}(\mu_{\pi^j(t)})$;
 - 2. $\eta^j(t) := \mathbb{1}\left[\exists j' \neq j, j' \in [M] : \pi^j(t) = \pi^{j'}(t)\right]$ is a collision indicator.

Assumption:

• There exists a constant m such that for any t, $m_t \le m \le K/2$.

Regret Definition:

$$\mathbb{E}[R(T)] := \sum_{t \leq T} \sum_{k \leq m_t} \mu_k - \mathbb{E}\left[\sum_{t \leq T} \sum_{j: T_{ ext{start}}^j \leq t \leq T_{ ext{end}}^j} r^j(t)
ight] \,,$$

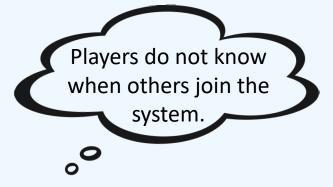
where μ_k is the k-th biggest reward expectation. $\mu_1 > \mu_2 > \cdots > \mu_K$.

	Environment	Com	Async setting	Regret bound
Boursier and Perchet [2019]	Decentralized	No	Players arrive at different times but never leave.	$\mathcal{O}\left(\frac{KM\log T}{\Delta_{(1)}^2} + \frac{KM^2\log T}{\mu_M}\right)$
Dakdouk [2022]	Decentralized	Yes	Activation probability p	$\mathcal{O}\left(\max\left\{K^2, \frac{\log(KT)}{Mp(1-p/K)^M}\right\}T^{2/3}\right)$
Richard et al. [2024]	Centralized	Yes	Known activation probability <i>p</i>	$\mathcal{O}\left(\sqrt{KT\log(KT)\min\{K,Mp\}}\right)$
Richard et al. [2024]	Centralized	Yes	Known activation probability <i>p</i>	$\mathcal{O}\left(\frac{(K^2 + (1+p)M^2)\log(KT)}{\Delta_{(2)}}\right)$
ACE	Decentralized	No	Players arrive and leave arbitrarily over time.	$\mathcal{O}\left(m^{3/2}M\sqrt{T\ln T} + \frac{mKM\log T}{\Delta_{(3)}^2}\right)$

Note:

Here "Com" column indicates whether direct communication (rather than via collision) is allowed. Our setting is more general and the assumption is mild.

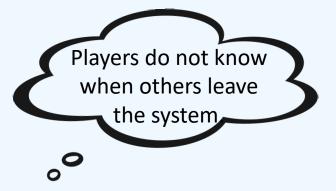
Challenge 1



Previous communication phase does not work. A player can join at any time and break the communication.

It is difficult to avoid collisions.

Challenge 2



The optimal arms depend on the number of active players. It can change.

When a player who is exploiting her optimal arm leaves the system, the left arms that are still exploited by players may become sub-optimal.

Challenge 1:

difficult to avoid collisions

Solution 1:

- There is no Communication phase; each player independently executes her own policy.
- Player j maintains a set A^j , representing the arms believed to be occupied by other players.
- Player j explores arms in $[K] \setminus A^j$ uniformly at random.
- If arms in $[K] \setminus A^j$ frequently result in collisions, player j infers that those arms are likely being occupied (exploited) by others and adds them to A^j .

Challenge 2:

change of optimal arms

Solution 2:

- Player j always pulls arms in A^j with a small probability ε .
- If arms in \mathcal{A}^j frequently result in non-collisions, player j infers that those arms are likely being released by others and removes them from \mathcal{A}^j .

Challenge 1:

difficult to avoid collisions

Solution 1:

- There is no Communication phase; each player independently executes her own policy.
- Player j maintains a set A^j , representing the arms believed to be occupied by other players.
- Player j explores arms in $[K] \setminus A^j$ uniformly at random.
- If arms in $[K] \setminus A^j$ frequently result in collisions, player j infers that those arms are likely being occupied (exploited) by others and adds them to A^j .

Challenge 2:

change of optimal arms

Solution 2:

- Player j always pulls arms in \mathcal{A}^j with a small probability ε .
- If arms in \mathcal{A}^j frequently result in non-collisions, player j infers that those arms are likely being released by others and removes them from \mathcal{A}^j .

Player j Adaptively Changes between an Exploration phase and an Exploitation phase:

- **Exploration phase:** If there exists an arm k such that $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$, then player j transitions to the exploitation phase and pulls arm k with probability 1ε .
- **Exploitation phase:** If player j detects that an arm in \mathcal{A}^j has been released, she switches back to the exploration phase.

Challenge 1:

difficult to avoid collisions

Solution 1:

- There is no Communication phase; each player independently executes her own policy.
- Player j maintains a set A^j , representing the arms believed to be occupied by other players.
- Player j explores arms in $[K] \setminus A^j$ uniformly at random.
- If arms in $[K] \setminus A^j$ frequently result in collisions, player j infers that those arms are likely being occupied (exploited) by others and adds them to A^j .

Challenge 2:

change of optimal arms

Solution 2:

- Player j always pulls arms in \mathcal{A}^j with a small probability ε .
- If arms in \mathcal{A}^j frequently result in non-collisions, player j infers that those arms are likely being released by others and removes them from \mathcal{A}^j .

Player *j* Adaptively Changes between an Exploration phase and an Exploitation phase:

- **Exploration phase:** If there exists an arm k such that $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$, then player j transitions to the exploitation phase and pulls arm k with probability 1ε .
- **Exploitation phase:** If player j detects that an arm in \mathcal{A}^j has been released, she switches back to the exploration phase.

DoubleSelection

- **Exploration phase:** player j samples $k \sim \text{Uniform}([K] \setminus A^j)$.
 - w.p. 1ε : pulls k twice;
 - w.p. ε : pull arm k once, then pull an arm $k' \sim \text{Uniform}(\mathcal{A}^j)$.
- **Exploitation phase:** let \hat{k}^j denote player j's exploitation arm.
 - w.p. 1ε : pulls \hat{k}^j twice;
 - w.p. ε : pulls \hat{k}^j once, then pull an arm $k' \sim \mathrm{Uniform}(\mathcal{A}^j)$.

DoubleSelection

- **Exploration phase:** player j samples $k \sim \text{Uniform}([K] \setminus A^j)$.
 - w.p. 1ε : pulls k twice;
 - w.p. ε : pull arm k once, then pull an arm $k' \sim \text{Uniform}(\mathcal{A}^j)$.
- **Exploitation phase:** let \hat{k}^j denote player j's exploitation arm.
 - w.p. 1ε : pulls \hat{k}^j twice;
 - w.p. ε : pulls \hat{k}^j once, then pull an arm $k' \sim \mathrm{Uniform}(\mathcal{A}^j)$.

Therefore, when a player wants to enter the exploitation phase, she needs to find an arm k satisfying:

- Condition 1: $\eta_{k_1}(t-1) + \eta_{k_2}(t) = 0$, where $k_1 = k_2 = k$;
- Condition 2: $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$.

DoubleSelection

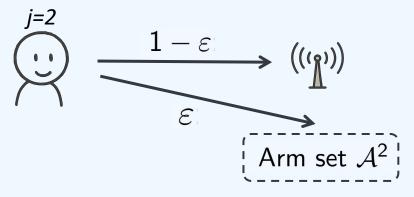
- **Exploration phase:** player j samples $k \sim \text{Uniform}([K] \setminus A^j)$.
 - w.p. 1ε : pulls k twice;
 - w.p. ε : pull arm k once, then pull an arm $k' \sim \mathrm{Uniform}(\mathcal{A}^j)$.
- **Exploitation phase:** let \hat{k}^j denote player j's exploitation arm.
 - w.p. 1ε : pulls \hat{k}^j twice;
 - w.p. ε : pulls \hat{k}^j once, then pull an arm $k' \sim \text{Uniform}(\mathcal{A}^j)$.

Therefore, when a player wants to enter the exploitation phase, she needs to find an arm k satisfying:

- Condition 1: $\eta_{k_1}(t-1) + \eta_{k_2}(t) = 0$, where $k_1 = k_2 = k$;
- Condition 2: $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$.

Exploration

Exploitation

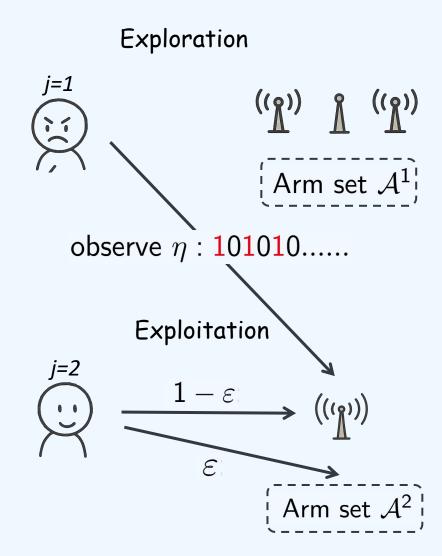


DoubleSelection

- **Exploration phase:** player j samples $k \sim \text{Uniform}([K] \setminus A^j)$.
 - w.p. 1ε : pulls k twice;
 - w.p. ε : pull arm k once, then pull an arm $k' \sim \text{Uniform}(\mathcal{A}^j)$.
- **Exploitation phase:** let \hat{k}^j denote player j's exploitation arm.
 - w.p. 1ε : pulls \hat{k}^j twice;
 - w.p. ε : pulls \hat{k}^j once, then pull an arm $k' \sim \text{Uniform}(\mathcal{A}^j)$.

Therefore, when a player wants to enter the exploitation phase, she needs to find an arm k satisfying:

- Condition 1: $\eta_{k_1}(t-1) + \eta_{k_2}(t) = 0$, where $k_1 = k_2 = k$;
- Condition 2: $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$.



Some Algorithmic Definition

- Let $\mathcal{P}_k^j, \mathcal{Q}_k^j$ denote two queues with fixed length $L_p = 866 \ln T$ and $L_q = 570 \ln T$, respectively.
- Let T_o^j , T_r^j denote the number of time steps that are required for player j to identify an occupied arm k and a released arm k, respectively.
- We also define:

$$\hat{\mu}_k^j(t) := \frac{\sum_{t'=1}^t r_k^j(t') \, \mathbb{1}\{\eta_k(t') = 0\}}{N_k^j(t)} \,, \qquad N_k^j(t) := \sum_{t'=1}^t \mathbb{1}\{\pi^j(t') = k, \, \eta_k(t') = 0\} \,,$$

$$\mathrm{UCB}_k^j(t) \coloneqq \hat{\mu}_k^j(t) + \sqrt{\frac{6\log T}{N_k^j(t)}}\,, \qquad \qquad \mathrm{LCB}_k^j(t) \coloneqq \hat{\mu}_k^j(t) - \sqrt{\frac{6\log T}{N_k^j(t)}}\,.$$

To solve Challenge 1

- At step t, if $k1 = k_2$ and they are both sampled from $[K] \setminus \mathcal{A}^j$, then player j adds $[\eta_{k_1}(t-1) \cdot \eta_{k_2}(t)]$ into a queue \mathcal{P}_k^j .
- If there exists an arm k s.t. $\sum_{i \in \mathcal{P}_k^j} i \geq \lceil 0.85L_p \rceil$, then player j adds k to \mathcal{A}^j .

Lemma 1.

With probability at least $1 - 1/T^2$:

- i) If arm k is occupied and remains occupied thereafter, player j will add k to $\mathcal{A}^j(t)$ with $E[T_o^j] \leq 1926 \textit{KInT}$ time steps;
- ii) If arm k is not occupied and remains not occupied thereafter, player j will not add k to $A^{j}(t)$.

To solve Challenge 2

- At step t, if k is sampled from \mathcal{A}^j , then player j adds $[1 \eta_k(t)]$ into a queue \mathcal{Q}_k^j .
- If there exists an arm k s.t. $\sum_{i \in \mathcal{Q}_k^j} i \geq \lceil 0.142L_q \rceil$, then player j removes k from \mathcal{A}^j .

Lemma 2.

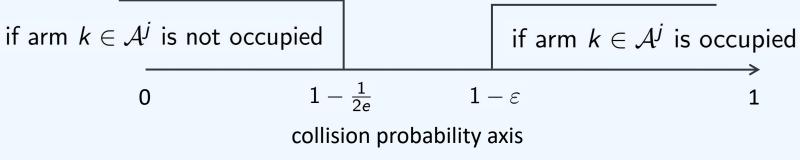
With probability at least $1 - 1/T^2$:

- i) If arm k is released and never occupied again, player j will remove k from $\mathcal{A}^j(t)$ with $E[T^j_r] \leq 1141 m ln T/\varepsilon$ time steps;
- ii) If arm k is not released and remains not released thereafter, player j will not remove k from $A^{j}(t)$.

Proof Skectch: Distingush Events via Collison Probablity

Let $k \in \mathcal{A}^j$. player j pulls arm k. Then she receives a collision or non-collision.

For the Adding:



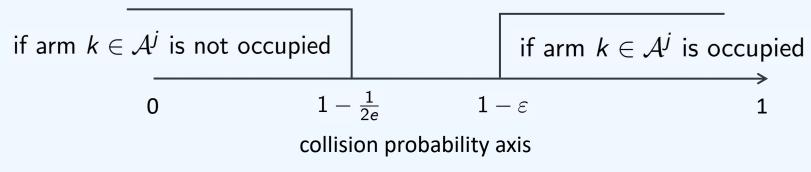
Take at most $\mathcal{O}(K \ln T)$ steps to separate them w.p. $1 - \frac{1}{T^2}$.

arm k is occupied a player is exploiting it the collision prob. 个

Proof Skectch: Distingush Events via Collison Probablity

Let $k \in \mathcal{A}^j$. player j pulls arm k. Then she receives a collision or non-collision.

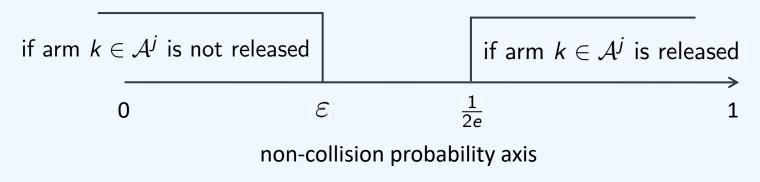
For the Adding:



arm k is occupied a player is exploiting it the collision prob. ↑

Take at most $\mathcal{O}(K \ln T)$ steps to separate them w.p. $1 - \frac{1}{T^2}$.

For the Removing:



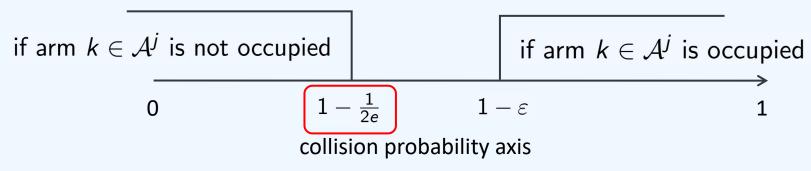
arm k is released no player is exploiting it the collision prob. ↓ the non-collision prob. ↑

Take at most $\mathcal{O}(\frac{m \ln T}{\varepsilon})$ steps to separate them w.p. $1 - \frac{1}{T^2}$.

Proof Skectch: Distingush Events via Collison Probablity

Let $k \in \mathcal{A}^j$. player j pulls arm k. Then she receives a collision or non-collision.

For the Adding:

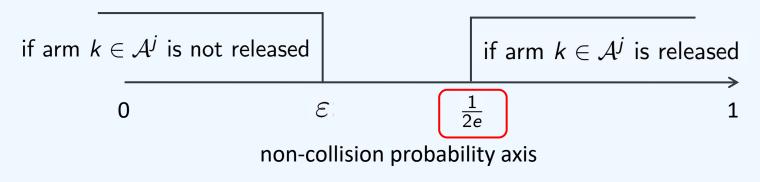


arm k is occupied a player is exploiting it the collision prob. 个

Take at most $\mathcal{O}(K \ln T)$ steps to separate them w.p. $1 - \frac{1}{T^2}$.

For the Removing:

use the assumption that $m \ll K/2$.



arm k is released no player is exploiting it the collision prob. ↓ the non-collision prob. ↑

Take at most $\mathcal{O}(\frac{m \ln T}{\varepsilon})$ steps to separate them w.p. $1 - \frac{1}{T^2}$.

$$\mathbb{E}[R(T)] = \sum_{t \leq T} \sum_{k \leq m_t} \mu_k - \mathbb{E}\left[\sum_{t \leq T} \sum_{j: T_{\mathrm{start}}^j \leq t \leq T_{\mathrm{end}}^j} r^j(t)\right]$$

$$\leq \sum_{t=1}^T \left(m_t - \mathbb{E}\left[\sum_{j: T_{ ext{start}}^j \leq t \leq T_{ ext{end}}^j} \mathbb{1}[\pi^j(t) \leq m_t, \eta^j(t) = 0]
ight]
ight)$$

the first *mt* optimal arms' expectation — active players' rewards (definition)

the number of active players — the number of active players who correctly select arms (select optimal arm and receive no collision)

$$\mathbb{E}[R(T)] = \sum_{t \leq T} \sum_{k \leq m_t} \mu_k - \mathbb{E}\left[\sum_{t \leq T} \sum_{j: T_{\text{start}}^j \leq t \leq T_{\text{end}}^j} r^j(t)\right]$$

$$0 \leq \sum_{t=1}^{\mathcal{T}} \left(m_t - \mathbb{E}\left[\sum_{j: T_{ ext{start}}^j \leq t \leq T_{ ext{end}}^j} \mathbb{1}[\pi^j(t) \leq m_t, \eta^j(t) = 0]
ight]
ight)$$

 $\leq \sum_{i \leq M} |\text{adding arms to } \mathcal{A}^j| + |\text{remove arms from } \mathcal{A}^j| + |\text{exploration}| + |\text{bad events}|$

the number of adding \times the regret of one adding process

$$\downarrow \\
\mathcal{O}(m^2M \times K \ln T)$$

the number of removing \times the regret of one removing process

$$\mathcal{O}(m^2M \times \frac{m \ln T}{\varepsilon})$$

successive elimination technique

$$\mathcal{O}(\frac{mKM\log T}{\Delta^2} + \varepsilon MT)$$

$$\mathbb{E}[R(T)] = \sum_{t \leq T} \sum_{k \leq m_t} \mu_k - \mathbb{E}\left[\sum_{t \leq T} \sum_{j: T^j_{\text{start}} \leq t \leq T^j_{\text{end}}} r^j(t)\right]$$

$$\leq \sum_{t=1}^T \left(m_t - \mathbb{E}\left[\sum_{j: T^j_{\text{start}} \leq t \leq T^j_{\text{end}}} \mathbb{I}[\pi^j(t) \leq m_t, \eta^j(t) = 0]\right]\right)$$

$$\leq \sum_{j \leq M} |\text{adding arms to } \mathcal{A}^j| + |\text{remove arms from } \mathcal{A}^j| + |\text{exploration}| + |\text{bad events}|$$
the number of adding \times the regret of one adding process the regret of one removing \times the regret of one removing process technique
$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Why m^2M ?

- Releasing arms can only happen due to a permanent departure of one player. There are m permanent departures.
- Each departure can cause at most (m-1) times of releasing.
- Sum over all players.

$$\mathbb{E}[R(T)] = \sum_{t \leq T} \sum_{k \leq m_t} \mu_k - \mathbb{E}\left[\sum_{t \leq T} \sum_{j: T_{\text{start}}^j \leq t \leq T_{\text{end}}^j} r^j(t)\right]$$

$$0 \leq \sum_{t=1}^{\mathcal{T}} \left(m_t - \mathbb{E}\left[\sum_{j: T_{ ext{start}}^j \leq t \leq T_{ ext{end}}^j} \mathbb{1}[\pi^j(t) \leq m_t, \eta^j(t) = 0]
ight]
ight)$$

 $\leq \sum_{i \leq M} |\text{adding arms to } \mathcal{A}^j| + |\text{remove arms from } \mathcal{A}^j| + |\text{exploration}| + |\text{bad events}|$

the number of adding \times the regret of one adding process

$$\downarrow \\
\mathcal{O}(m^2M \times K \ln T)$$

the number of removing \times the regret of one removing process

$$\mathcal{O}(m^2M \times \frac{m \ln T}{\varepsilon})$$

successive elimination technique

$$\mathcal{O}(\frac{mKM\log T}{\Delta^2} + \varepsilon MT)$$

Why m^2M ?

- Releasing arms can only happen due to a permanent departure of one player. There are m permanent departures.
- Each departure can cause at most (m-1) times of releasing.
- Sum over all players.

same for the adding process

Theorem 1.

Given K arms and M players, and let $\varepsilon = \min\{\sqrt{\frac{1141m^3\ln(T)}{2T}}, \frac{1}{K}, \frac{1}{10}\}$, the regret of Algorithm 1 is bounded by

$$\mathbb{E}[R(T)] \leq \frac{576emKM\log(T)}{\Delta^2} + 96m^{3/2}M\sqrt{T\ln(T)} + 7704m^2KM\ln(T) + (4emKM)^2,$$

where $\Delta := \min_{k \leq m} (\mu_k - \mu_{k+1})$.

$\mathcal{O}(\log T/\Delta^2)$ arises from Challenge 1:

Players cannot completely avoid collisions, leading to a regret of $\mathcal{O}(\log T/\Delta^2)$ instead of the standard $\mathcal{O}(\log T/\Delta)$.

$\mathcal{O}(\sqrt{T \log T})$ incurs from Challenge 2:

The set of optimal arms may change over time, so players must pull occupied arms with a small probability. This persistent exploration contributes a regret of $\mathcal{O}(\sqrt{T \log T})$.

Corollory 1.

Given K arms and M players, $\varepsilon = \min\{\sqrt{\frac{1141K^3\ln(T)}{16T}}, \frac{1}{K}, \frac{1}{10}\}$, the regret of Algorithm 1 is bounded by

$$\mathbb{E}[R(T)] \leq \frac{288e^{K^2}M\log(T)}{\Delta^2} + 34K^{3/2}M\sqrt{T\ln(T)} + 1926K^3M\ln(T) + (3e^{K^2}M)^2.$$

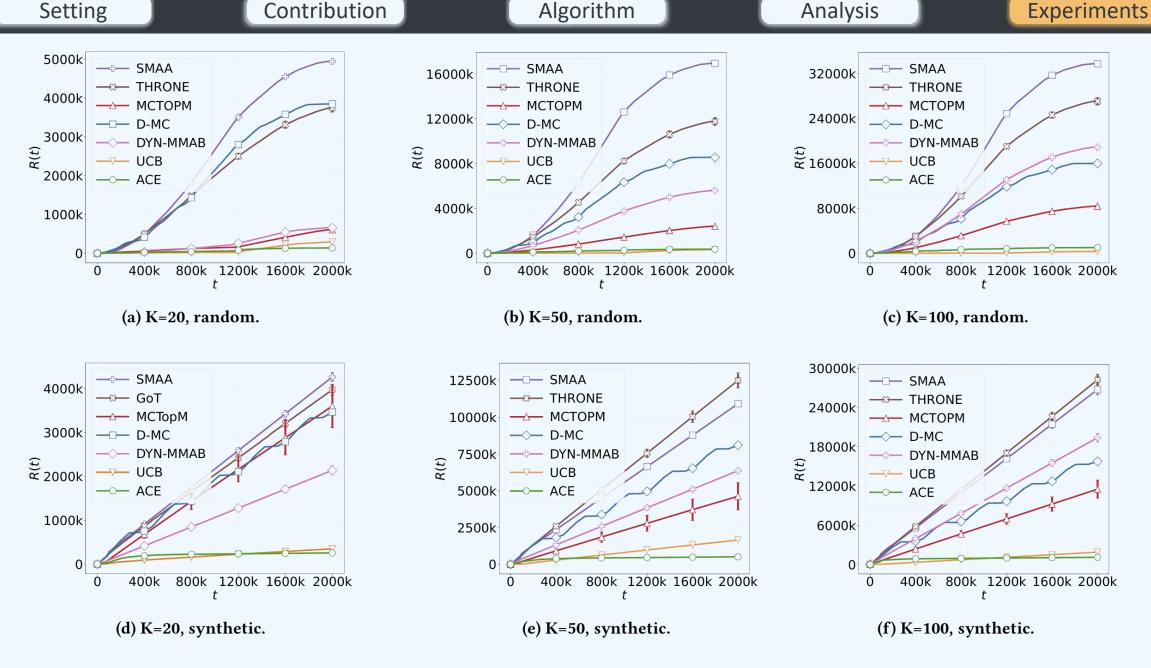
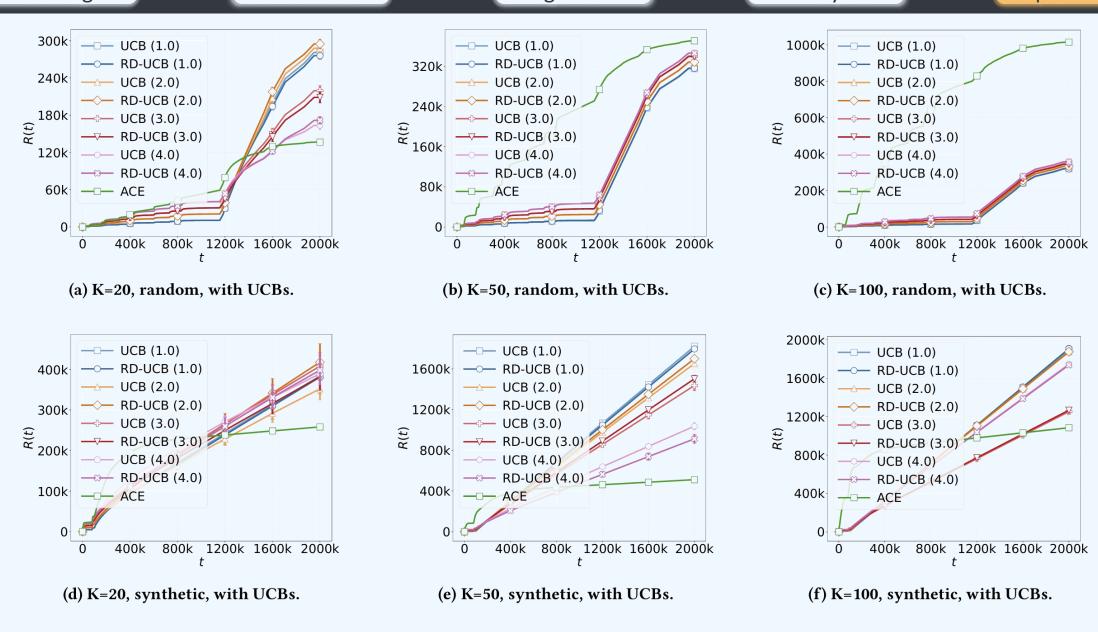


Figure 1: Comparison of cumulative regret for different numbers of arms K under different asynchronization settings.



Algorithm

Analysis

Experiments

Contribution

Setting

Figure 2: Comparison of cumulative regret between UCB with multiple parameters and ACE for different K under different asynchronous settings.

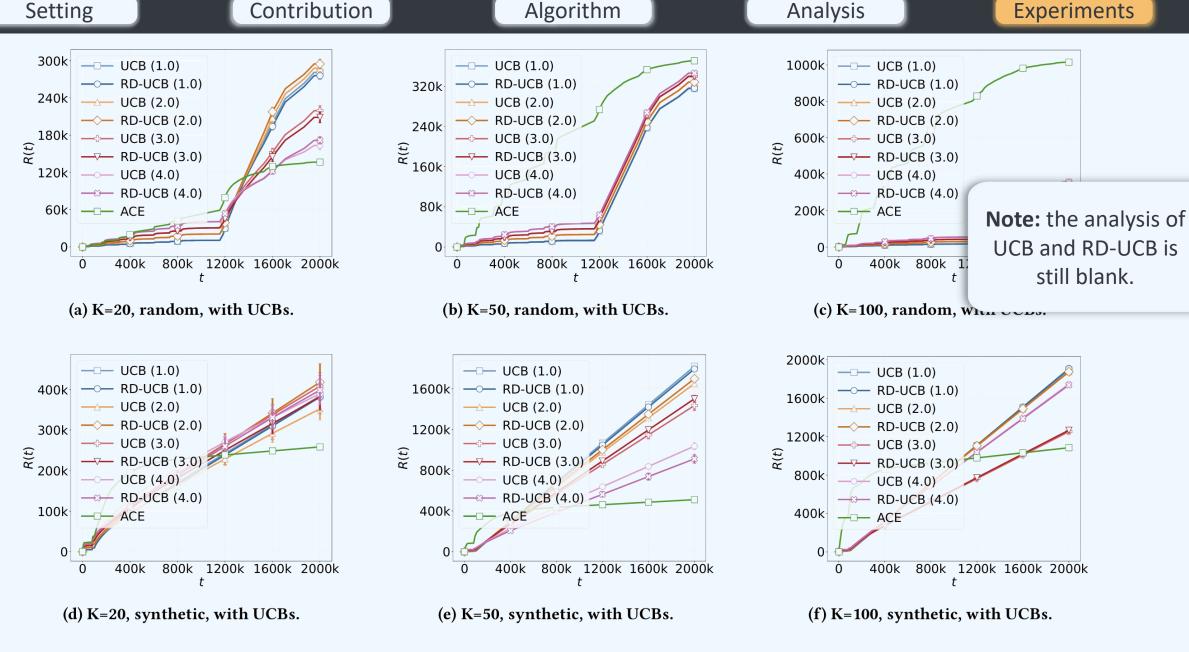


Figure 2: Comparison of cumulative regret between UCB with multiple parameters and ACE for different K under different asynchronous settings.

Summary

the first paper handling asynchronization in decentralized MP-MAB with theoretical guarantee and good empirical performance more general setting than previous works