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Problem formulation:

M players, K arms, T total steps.

Let [M] :={1,..., M} and [K] :={1,...,K}.

Let 1 < Tgtart = Ténd < T. A player is active at step t means that she needs to pull an arm at
this step. Let m; denote the number of active players at step t.

j
to T

star end”

Each player j € [M] is only active from T!

Player j is only aware of T, but does not know Tgtart and Téﬂd.

At each step t € [T, Tgnd], player j pulls an arm 7/(t) € [K].

start’
She observes < r/(t),/(t) >, where
1. A(t) := XI(t)[L —n/(t)] is a reward, and X/(t) ~ Bernoulli(iri(r));
2. (t) =1 [Elj’ +4,j €[M]:m(t) = ﬂ'j’(t)] is a collision indicator.
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Assumption:

® There exists a constant m such that for any t, m; < m < K /2.

Regret Definition:

BIRTI=2, 2 om—E12, 2w

=l o) f
- Tbtart<t<T

where uy i1s the k-th biggest reward expectation. @1 > pup > -+ > uk.
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Environment Com Async setting Regret bound

Boursier Decentralized No  Players arrive at O (K Aizlog L. Kl )
. . 23

and different times but &
Perchet never leave.
[2019]
Dakdouk Decentralized Yes  Activation O (max { K2, 3o L 12/
[2022] probability p
Richard Centralized ~ Yes Known activation O (\/KT log(KT) min{ X, Mp})
et al. probability p
[2024]
Richard Centralized Yes  Known activation O (( “+ (1t I\f ﬂog(KT))
et al. probability p @
[2024]
ACE Decentralized No  Players arrive and ( S2MVTInT + 2ELe T)

leave arbitrarily
over time.

(3)

Note:

Here “Com” column indicates whether direct communication (rather than via collision) is allowed.

Our setting is more general and the assumption is mild.




Setting Contribution

Challenge 1

Players do not know
when others join the
system.

Previous communication phase does
not work. A player can join at any time
and break the communication.

It is difficult to avoid collisions.

Algorithm

Challenge 2

Players do not know
when others leave
the system

The optimal arms depend on the number
of active players. It can change.

When a player who is exploiting her
optimal arm leaves the system, the left
arms that are still exploited by players
may become sub-optimal.



Algorithm

Challenge 1.: Challenge 2:
difficult to avoid collisions change of optimal arms
Solution 1: Solution 2:
® There is no Communication phase; each player independently * Player j always pulls arms in A with a small probability .
executes her own policy. ® If arms in A/ frequently result in non-collisions, player j infers
® Player j maintains a set A4/, representing the arms believed to it drese atine el ey oeinns | dlekadl By ednsls e

J
be occupied by other players. removes them from A/.

® Player j explores arms in [K]\ A/ uniformly at random.

* If arms in [K]\ A/ frequently result in collisions, player j infers
that those arms are likely being occupied (exploited) by others
and adds them to A/.



Challenge 1:

" Contribution

difficult to avoid collisions

Solution 1:

There is no Communication phase; each player independently
executes her own policy.

Player j maintains a set A/, representing the arms believed to
be occupied by other players.

Player j explores arms in [K]\ A/ uniformly at random.

If arms in [K]\ A/ frequently result in collisions, player j infers
that those arms are likely being occupied (exploited) by others
and adds them to A/.
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Challenge 2:

change of optimal arms

Solution 2:

® Player j always pulls arms in A/ with a small probability .

® If arms in A/ frequently result in non-collisions, player j infers
that those arms are likely being released by others and
removes them from A/,

;V Algorithmic Framework of ACE ‘Z

Player j Adaptively Changes between an Exploration phase and an Exploitation phase:

e Exploration phase: If there exists an arm k such that LCBJ,-{ = UCBJé for all ¢ # k, ¢ € [K]\ A,
then player j transitions to the exploitation phase and pulls arm k with probability 1 — €.

e Exploitation phase: If player j detects that an arm in AJ has been released, she switches back to the

exploration phase.
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Challenge 1:

difficult to avoid collisions

Solution 1:

® There is no Communication phase; each player independently
executes her own policy.

® Player j maintains a set A/, representing the arms believed to
be occupied by other players.

® Player j explores arms in [K]\ A/ uniformly at random.

e If arms in [K]\ A/ frequently result in collisions, player j infers
that those arms are likely being occupied (exploited) by others
and adds them to A’.

Challenge 2:

change of optimal arms

Solution 2:

® Player j always pulls arms in A/ with a small probability .

® If arms in A/ frequently result in non-collisions, player j infers
that those arms are likely being released by others and
removes them from A’.

Since player j does not
always exploit k, others may
also set k as exploitation arm!

SV Algorithmic Framework of ACE ‘Z o

o

Player j Adaptively Changes between an Exploration phase and an Exploitation phase:

e Exploration phase: If there exists an arm k such that LCBJ,-{ = UCBJé for all ¢ # k, ¢ € [K]\ A,
then player j transitions to the exploitation phase and pulls arm k with probability 1 — €.

e Exploitation phase: If player j detects that an arm in AJ has been released, she switches back to the

exploration phase.
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““Since player j does not always exploit k, others may also set k as
exploitation arm!

DoubleSelection

e Exploration phase: player j samples k ~ Uniform([K]\ A/).
® w.p. 1 —e: pulls k twice; _
® w.p. €: pull arm k once, then pull an arm k’ ~ Uniform(A’).
e Exploitation phase: let ki denote player j's exploitation arm.
® wp. 1—e: pulls ki twice: |
® w.p. &: pulls K once, then pull an arm k’ ~ Uniform(.A’).
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’ _j
o“ “since player j does not always exploit k, others may also set k as
exploitation arm!

DoubleSelection

e Exploration phase: player j samples k ~ Uniform([K]\ A/).
® w.p. 1 —e: pulls k twice;
® w.p. &: pull arm k once, then pull an arm k' ~ Uniform(A’).

e Exploitation phase: let ki denote player j's exploitation arm.
 w.p. 1—¢: pulls K twice;
® w.p. &: pulls K once, then pull an arm k’ ~ Uniform(.A’).

Therefore, when a player wants to enter the exploitation phase, she needs to
find an arm k satisfying:

® Condition 1: 7, (t — 1) + 1n,(t) = 0, where k1 = ko = k;
e Condition 2: LCB) > UCB/, for all £ # k, £ € [K]\ A/.
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Some Algorithmic Definition

® |et ’Pj, ij denote two queues with fixed length L, =866In T and L, = 5701In T, respectively.

® |et Té'? T;" denote the number of time steps that are required for player j to identify an occupied arm
k and a released arm k, respectively.

e We also define:

L (1) L (1) = 0}
N (1)

: N 6loo T ; N 6log T
UCBL (1) = (1) + || —o—, LCBY (1) = (1) - J.g |
N7 (t) N, (t)

() = C N =) 1 () =k ne(t') = 0},
t'=1
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To solve Challenge 1

® At step i if k1 = ko and they are both sampled from
[K] \ A/, then player j adds [7, (t — 1) - nk,(t)] into a
queue 77{(.

® |f there exists an arm k s.t. ZieP{; i > [0.85L,], then
player j adds k to A/.

Lemma 1.
With probability at least 1 — 1/T?2:

i) If arm k is occupied and remains occupied thereafter,
player j will add k to A/(t) with E[TJ] < 1926KInT time
steps;

ii) If arm k is not occupied and remains not occupied
thereafter, player j will not add k to A/(t).

To solve Challenge 2

® At step t, if k is sampled from Al then player j adds
[1 — nk(t)] into a queue Q.
® If there exists an arm k s.t. 3, i > [0.142L4], then
k

player j removes k from A/.

Lemma 2.
With probability at least 1 —1/T2:

i) If arm k is released and never occupied again, player j
will remove k from A/(t) with E[T}] < 1141minT /< time
steps;

ii) If arm k is not released and remains not released
thereafter, player j will not remove k from A/(t).
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Proof Skectch: Distingush Events via Collison Probablity

Let k € AJ. player j pulls arm k. Then she receives a collision or non-collision.
For the Adding:

TR
if arm k € A/ is not occupied if arm k € A/ is occupied . arm k is occupied
S . a player is exploiting it
0 [ 11—z 1 | the collision prob. 1
< \

collision probability axis

Take at most O(K In T) steps to separate them w.p. 1 — 2.

-—ee— = = = =
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Proof Skectch: Distingush Events via Collison Probablity

Let k € AJ. player j pulls arm k. Then she receives a collision or non-collision.

For the Adding:

- T T T T T T T T >
if arm k € A’ is not occupied if arm k € A/ is occupied i arm k is occupied !
~ . a player is exploiting it !
0 e 1= 1 l\ the collision prob. /}
collision probability axis
Take at most O(K In T) steps to separate them w.p. 1 — 2.
For the Removing:
. _ ST )\
if arm k € A’ is not released if arm k € A/ is released ' arm k is released :
S ' no player is exploiting it !
0 = % 1 ! the collision prob. {, !
| the non-collision prob. 1+ |
non-collision probability axis N e %

1

Take at most (’)(%) steps to separate them w.p. 1 — =.
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Proof Skectch: Distingush Events via Collison Probablity

Let k € AJ. player j pulls arm k. Then she receives a collision or non-collision.

For the Adding:

om mm mm mm mm mm mm mm mm Em Em Em Em Em Em Em Em Em =

arm k is occupied
a player is exploiting it

: 1 et T

collision probability axis

if arm k € A/ is not occupied if arm k € A/ is occupied

— e = = = =
-—ee— = = = =

Take at most O(K In T) steps to separate them w.p. 1 — 2.
For the Removing: use the assumption that m <= K/2.
: _ RO iR
if arm k € A’ is not released if arm k € A/ is released ' arm k is released :
S ' no player is exploiting it !
0 £ 1 ! the collision prob. {, !
| the non-collision prob. T+
non-collision probability axis N e %

1

Take at most (’)(%) steps to separate them w.p. 1 — =.
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Proof Skectch
ER(TI=) > m—-E
t<T k<m
] i

SZ m; — E
t=1

2. 2 T

t<T ;.74 -
= <t<T_ 4

start —

Ji T art St T

| /- Tstart = end

L[/ () < me, 1/ (t) = 0]

the first mt optimal arms’ expectation —
active players’ rewards (definition)

the number of active players — the number of active
players who correctly select arms (select optimal arm
and receive no collision)
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Proof Skectch _
SCUED P IEE] )R DG
S S t<T—" Tétart<t<TJ
) _ | | _
SZ my — & Z L/ (t) < me, 7/ (t) = O]
t=1 i Ty SESTI ]
< ladding arms to A/| + |remove arms from A’| 4 |exploration| + |bad events|
the number of adding x the the number of removing x the successive elimination
regret of one adding process regret of one removing process technique .
J \’

O(m?M x KIn T) O(m?M x mIinT) O(ZEYREL 4 eMT)

&l
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Proof Skectch _
SCUED P IEE] )R DG
S S t<T—" T;‘tart<t<TJ
T | _ | |
< m-E| Y 1) < mni(e) =0
t=1 i Ty SESTI ]
< ladding arms to A/| + |remove arms from A’| 4 |exploration| + |bad events|
the number of adding x the the number of removing x the successive elimination
regret of one adding process regret of one removing process technique
J J y
O(m?M x KIn T) O(m*M x minT) O(ZEYREL 4 eMT)
Why m2M?

® Releasing arms can only happen due to a permanent departure of
one player. There are m permanent departures.

® Each departure can cause at most (m-1) times of releasing.

® Sum over all players.
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Proof Skectch i
SCUE Sp I DORED ST
S S t<T—" T;‘tart<t<TJ
T [ _ | |
S m-E| ¥ 1) <m0
t=1 i Ty SESTI ]
< ladding arms to A/| + |remove arms from A’| 4 |exploration| + |bad events|
the number of adding x the the number of removing x the successive elimination
regret of one adding process regret of one removing process technique
\L v KM \LT
O(m?*M x KInT) O(m*M x minl) O(==x=— +eMT)
Why m2M?
® Releasing arms can only happen due to a permanent departureof
one player. There are m permanent departures. | same for the adding |
| |
® Each departure can cause at most (m-1) times of releasing. o process J

® Sum over all players.
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Theorem 1.
Given K arms and M players, and let € = mln{\/1141m3|"(n ~, 75}, the regret of Algorithm 1 is bounded

by

576emKMlog( T
E[R(T)] < A2 ( )—|—96m3/2M\/TIn(T)+7704m2KMIn(T)+(4emKM)2

where A 1= ming<m,(ftk — tk+1)-

O(log T /A?) arises from Challenge 1:
Players cannot completely avoid collisions, leading to a regret of O(log T /A?) instead of the standard

O(log T/A).
O(+/T log T) incurs from Challenge 2:

The set of optimal arms may change over time, so players must pull occupied arms with a small
probability. This persistent exploration contributes a regret of O(/ T log T).

Corollory 1.
Given K arms and M players, € = min{\/lld'lg).,l-n(n, %, %} the regret of Algorithm 1 is bounded by

288eK°M log(T
E[R(T)]< A2 ( )+34K3/2M\/Tln(T)+ 1926 K> M In(T) + (3eK*M)?
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(d) K=20, synthetic.
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(e) K=50, synthetic.
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(c) K=100, random.
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(f) K=100, synthetic.

Figure 1: Comparison of cumulative regret for different numbers of arms K under different asynchronization settings.
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(d) K=20, synthetic, with UCBs. (e) K=50, synthetic, with UCBs. (f) K=100, synthetic, with UCBs.

Figure 2: Comparison of cumulative regret between UCB with multiple parameters and ACE for different K under different
asynchronous settings.
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(d) K=20, synthetic, with UCBs. (e) K=50, synthetic, with UCBs. (f) K=100, synthetic, with UCBs.
Figure 2: Comparison of cumulative regret between UCB with multiple parameters and ACE for different K under different

asynchronous settings.



Summary

the first paper handling asynchronization in decentralized MP-MAB
with theoretical guarantee and good empirical performance
more general setting than previous works



