Multi-player Multi-armed Bandits with Delayed Feedback

Jingqi Fan¹, Zilong Wang², Shuai Li², Linghe Kong²

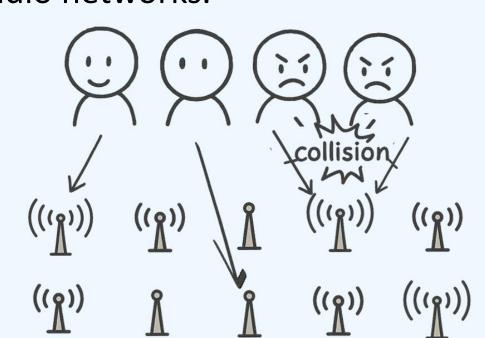
Paper ID: 1412

1 Northeastern University, China 2 Shanghai Jiao Tong University

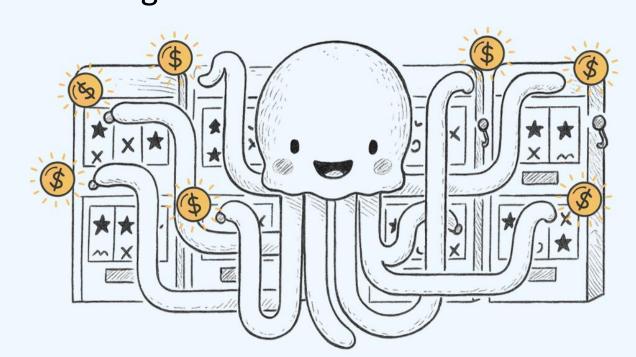
Abstract

Motivation:

Users experience delay in cognitive radio networks.



Multi-armed Bandits is a classical decision-making framework.



Contribution:

- A new framework: Decentralized Multi-player multi-armed bandits with stochastic delay feedback.
- An noval algorthm: (1) Collision-free exploration: Design specific arm-selection strategies for players to avoid collisions during exploration. (2) Implicit communication: Enable players to leverage the exploration results of others.
- **Near-optimal regret bound:** We establish a regret upper bound and derive a corresponding lower bound to prove the algorithm is near-optimal.

Setting

Problem Formulation:

- M players, K arms, T total steps.
- Let $[M] := \{1, ..., M\}$ and $[K] := \{1, ..., K\}$.
- At each step s, each player $j \in [M]$ pulls an arm $\pi^j(t) \in [K]$.
- The environment generates $X^j(s) \sim \mathrm{Bernoulli}(\mu_{\pi^j(s)})$ and $r^j(s) := X^j(s)[1 \eta^j(s)]$.
- The environment also generates $d^j(s) \sim D_{\pi^j(s)}$, where $D_{\pi^j(s)}$ is an unknow distribution.
- Then, at step $s + d^{j}(s) 1$, player j receives the feedback $[r^{j}(s), \eta^{j}(s), s]$.

Goal: minimize the regret

$$\mathbb{E}[R(T)] := \sum_{s \leq T} \sum_{k \leq M} \mu_k - \mathbb{E}\left[\sum_{s \leq T} \sum_{j \leq M} r^j(s)\right],$$

where μ_k is the k-th biggest reward expectation. $\mu_1 \ge \cdots \ge \mu_K$.

Assumption:

- 1. $D_k = D_{k'} = D, \forall k \in [K]$. D is sub-Gaussian.
 - σ_d^2 denotes the sub-Gaussian parameter and $\mathbb{E}[d]$ denotes the expectation.
 - Note that σ_d^2 and $\mathbb{E}[d]$ are unknown.
- 2. Each player is aware of her own rank j.

Algorithm

Definition:

- $N_k^j(t) := \sum_{s \le t} \mathbb{1}[\pi^j(s) = k, \eta_k(s) = 0]$ denotes the number of accumulated time steps that player j pulls arm k without collisions.
- $n_k^j(t) := \sum_{s \le t} \mathbb{1}[\pi^j(s) = k, \eta_k(s) = 0, d^j(s) + s \le t]$ denotes the number of accumulated time steps that player j pulls arm k and receive the feedback without collisions.
- Let $\mathcal{M}^j(p)$ denote the set of empirical optimal arms during the p-th phase. $|\mathcal{M}^j(p)| = M$.
- ullet The estimated reward expectation of arm k from player j's view at step t is defined as

$$\hat{\mu}_k^j(t) := \frac{\sum_{s \leq t} r^j(s) \mathbb{1}[\pi^j(s) = k, \eta_k(s) = 0, d^j(s) + s \leq t]}{n_k^j(t)}.$$

• The upper confidence bound and lower confidence bound are defined as

$$\mathrm{UCB}_k^j(t) := \hat{\mu}_k^j(t) + \sqrt{\frac{2\log T}{n_k^j(t)}}, \quad \mathrm{LCB}_k^j(t) := \hat{\mu}_k^j(t) - \sqrt{\frac{2\log T}{n_k^j(t)}}.$$

Brief Introduction of the Algorithm:

- The algorithm is divided into many exploration-communication phases.
- Let $\mathcal{M}^j(p)$ denote the set of empirical optimal arms during the p-th phase. $|\mathcal{M}^j(p)| = M$. Players initialize $\mathcal{M}^j(1)$ which is a list with $\mathcal{M}^j(1) = \mathcal{M}^{j'}(1)$ for any $j, j' \in [M]$.
- Players are divided into a leader and many followers.
- They pull arms in a round-robin way to avoid collisions while the leader is in charge of exploring arms. **[Exploration Phase]**
- Sometimes they collide on purpose to pass messages. [Communication Phase]
- When a player j receives a feedback at time t, she updates $n_k^j(t), \hat{\mu}_k^j(t), \text{UCB}_k^j(t), \text{LCB}_k^j(t)$ and the estimation of $\mathbb{E}[d]$ and σ_d^2 with

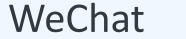
$$\hat{\mu}_{d}^{j}(t) := \frac{\sum_{s < t} \left(d^{j}(s) \mathbb{1}\{s + d^{j}(s) < t\} \right)}{\sum_{s < t} \mathbb{1}\{s + d^{j}(s) < t\}},$$

$$(\hat{\sigma}_{d}^{2})^{j}(t) := \frac{\sum_{s < t} \left([d^{j}(s) - \hat{\mu}_{d}^{j}(t)] \mathbb{1}\{s + d^{j}(s) < t\} \right)^{2}}{\sum_{s < t} \mathbb{1}\{s + d^{j}(s) < t\}}.$$

Applying 26Fall PhD

Jingqi Fan is applying 26Fall PhD. Feel free to reach out!

- Junior **undergrad** at NEU, China.
- Research interests: RL (theory + real-world applications),
 with a specific focus on multi-agent systems.
- Some experience on bandits, LLM agents and RL on OM.
- Fortunate to have worked with many nice profs and interned at Theory Center & ML Group @ MSR Asia.



• Each player j aims to find q^j such that

$$q^j = \arg\min_q \left\{ q \in \mathbb{N} \mid t > \hat{\mu}_d^j(t) + (p-q)KM\log(T)\sqrt{2(\hat{\sigma}_d^2)^j(t)\log\left((M-1)(K+2M)(T)\right)} \right\} \,.$$

• Starting from Phase 2, players always use some old exploration results, i.e., $\mathcal{M}^{j}(p-q^{j})$, to mitigate the influence of delay.

Exploration Phase p

Leader:

- Explore arms in $\mathcal{M}^j(p-q^j)$ and $\mathcal{K}\setminus\mathcal{M}^j(p-q^j)$.
- Add arms with the first M-th higgest reward means into $\mathcal{M}^j(p+1)$.
- Remove arm k from \mathcal{K} if $UCB_k^j(t) \leq LCB_\ell^j(t), \forall \ell \in \mathcal{K} \setminus \{k\}.$

Followers:

• Explore arms in $\mathcal{M}^j(p-q^j)$

Communication Phase p

- When $t = p \cdot KM \log T$, a Com phase starts.
- Compare $\mathcal{M}^j(p-q^j)$ with $\mathcal{M}^j(p+1)$.
- Send i_{k^-} by pulling the i_{k^-} -th arm in $\mathcal{M}^j(p-q^j)$ for M steps.
- Send k^+ by pulling arm k^+ for K steps.
- Send End = False by pulling arms in $\mathcal{M}^j(p-q^j)$ round-robinly for M steps.
- Receive a collision from the i_k -th arm by pulling arms in $\mathcal{M}^j(p-q^j)$ round-robinly.
- Receive a collision from arm k by pulling arms in [K] round-robinly.
- Receive non-collision (indicating End = False) when pulling arms in $\mathcal{M}^j(p-q^j)$ round-robinly.

••••

Exploitation Phase

• Each player j pulls the j-th arm in $\mathcal{M}^j(p_{\mathsf{max}})$ until T.

Analysis

Theorem 1 [Regret Upper Bound in Decentralized setting]. Let

 $\Delta:=\min_{k\leq M}\mu_k-\mu_{k+1}$ and $\Delta_{k,\ell}:=\mu_k-\mu_\ell$. In decentralized setting, given any K,M and a quantile $\theta\in(0,1)$, for delay distribution under Assumption 1, the regret of the algorithm satisfies

$$\mathbb{E}[R(T)] \leq \sum_{k>M} \frac{323 \log(T)}{\theta \Delta_{M,k}} + \frac{M}{K-M} \sum_{k>M} \Delta_{1,k} d_1 + \frac{15}{\theta} d_2 + d_3 + C.$$

Corollary 1 [Regret Upper Bound in centralized setting]. In centralized setting, for delay distribution under Assumption 1, given any K, M, μ and a quantile $\theta \in (0, 1)$, the regret of our algorithm satisfies

$$\mathbb{E}[R(T)] \leq \sum_{k>M} \frac{323 \log(T)}{\theta \Delta_{M,k}} + \frac{M}{K-M} \sum_{k>M} \Delta_{1,k} \mathbb{E}[d] + \frac{9}{\theta} d_2 + d_3.$$

Theorem 2 [Regret Lower Bound]. For a quantile $\theta \in (0,1)$ and any sub-optimal gap set $S_{\Delta} = \{\Delta_{M,k} \mid \Delta_{M,k} = \mu_{(M)} - \mu_{(k)} \in [0,1]\}$ of cardinality K-M, there exists an instance with an order on S_{Δ} and a sub-Gaussian delay distribution such that

$$\mathbb{E}[R(T)] \geq \sum_{k>M} \frac{(1-o(1))\log(T)}{2\theta\Delta_{M,k}} + \frac{M}{2K} \sum_{k>M} \Delta_{M,k} d_4 - \frac{2}{\theta},$$

where

$$\begin{aligned} d_1 &= 2\mathbb{E}[d] + \sigma_d \sqrt{3\log(K)} \,, \quad d_2 &= \mathbb{E}[d] + \sigma_d \sqrt{2\log(\frac{1}{1-\theta})} \,, \\ d_3 &= \frac{656\sqrt{2}\sigma_d^2}{\theta K^2 M^2} + 3\sqrt{6}\sigma_d \,, \quad d_4 &= \mathbb{E}[d] - \sigma_d \sqrt{\frac{\theta}{1-\theta}} \,, C = \sum_{k>M} \frac{195}{\theta \Delta_{M,k}} + \frac{4M}{\Delta^2} \,. \end{aligned}$$

- Only the first terms in Theorem 1 and Theorem 2 are related to T. They are aligned up to constant factors.
- The last term in Theorem 1 arises from the decentralized environment and is not related to delay. In the centralized setting, this term vanishes, as shown in Corollary 1.
- Regarding delay, a comparison between Theorem 1 and Theorem 2 reveals that the difference in their dependence on K and M is only $O(\frac{1}{1-M/K})\sqrt{\log(K)}$. This indicates that the regret caused by delay does not grow rapidly as K and M increase.
- Theorem 1 and Corollary 1 demonstrate that our algorithm works efficiently in both centralized and decentralized settings.